Structure of tight junctions during Cl secretion in the perfused rectal gland of the dogfish shark

Author:

Forrest J. N.,Boyer J. L.,Ardito T. A.,Murdaugh H. V.,Wade J. B.

Abstract

In epithelia that secrete sodium chloride, high-conductance tight junctions between cells have been proposed as the primary pathway for transepithelial sodium flux. We examined the properties of tight junctions in the perfused rectal gland of the dogfish shark during basal secretion and following adenosine 3',5'-cyclic monophosphate stimulation of sodium chloride secretion. Freeze-fracture electron microscopy revealed extensive interdigitation of adjacent cells with an associated amplification in the length of tight junctions per area of luminal surface, averaging 102 +/- 4.7 m/cm2 in outer regions of 80 +/- 6.7 in inner regions of the gland. Marked heterogeneity of junctional structure was present with junctional elements varying from single strands to three duplex elements and junctional depth varying from 15 to 60 nm. In glands perfused with lanthanum chloride, ionic lanthanum filled the intercellular space up to but not through the tight junctions. Characteristics of tight junctions were not different during basal and maximally stimulated sodium chloride secretion. These studies define tight junctions in the rectal gland as an anatomical barrier capable of restricting the passage of relatively small molecules such as urea while providing a greatly amplified junctional area for the passive diffusion of sodium and water.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanism of interdigitation formation at apical boundary of MDCK cell;iScience;2023-05

2. Immunohistochemical colocalization of G protein alpha subunits and 5-HT in the rectal gland of the cartilaginous fishScyliorhinus canicula;Microscopy Research and Technique;2017-05-22

3. Research in the 1970s: The Fourth Generation;Marine Physiology Down East: The Story of the Mt. Desert Island Biological Laboratory;2015

4. Year-Round Operation: The First Attempt;Marine Physiology Down East: The Story of the Mt. Desert Island Biological Laboratory;2015

5. Morphology of the rectal gland of the spiny dogfish (Squalus acanthias) shark in response to feeding;Canadian Journal of Zoology;2009-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3