Author:
Tompkins John D.,Parsons Rodney L.
Abstract
Activation of P2X receptors by a Ca2+- and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein-dependent release of ATP was measured using patch-clamp recordings from dissociated guinea pig stellate neurons. Asynchronous transient inward currents (ASTICs) were activated by depolarization or treatment with the Ca2+ionophore ionomycin (1.5 and 3 μM). During superfusion with a HEPES-buffered salt solution containing 2.5 mM Ca2+, depolarizing voltage steps (−60 to 0 mV, 500 ms) evoked ASTICs on the decaying phase of a larger, transient inward current. Equimolar substitution of Ba2+for Ca2+augmented the postdepolarization frequency of ASTICs, while eliminating the larger transient current. Perfusion with an ionomycin-containing solution elicited a sustained activation of ASTICs, allowing quantitative analysis over a range of holding potentials. Under these conditions, increasing extracellular [Ca2+] to 5 mM increased ASTIC frequency, whereas no events were observed following replacement of Ca2+with Mg2+, demonstrating a Ca2+requirement. ASTICs were Na+dependent, inwardly rectifying, and reversed near 0 mV. Treatment with the nonselective purinergic receptor antagonist pyridoxal phosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS) (10 μM) blocked all events under both conditions, whereas the ganglionic nicotinic antagonist hexamethonium (100 μM and 1 mM) had no effect. PPADS also blocked the macroscopic inward current evoked by exogenously applied ATP (300 μM). The presence of botulinum neurotoxin E (BoNT/E) in the whole-cell recording electrode significantly attenuated the ionomycin-induced ASTIC activity, whereas phorbol ester treatment potentiated this activity. These results suggest that ASTICs are mediated by vesicular release of ATP and activation of P2X receptors.
Publisher
American Physiological Society
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献