Modal gating in neuronal and skeletal muscle ryanodine-sensitive Ca2+ release channels

Author:

Armisen R.1,Sierralta J.1,Velez P.1,Naranjo D.1,Suarez-Isla B. A.1

Affiliation:

1. Departamento de Fisiologia y Biofisica, Facultad de Medicina, Universidad de Chile, Santiago, Chile.

Abstract

The bursting behavior of ryanodine-sensitive single Ca2+ release channels present in chicken cerebellum endoplasmic reticulum (ER), rat hippocampus ER, and frog and rabbit skeletal muscle sarcoplasmic reticulum was established. Unconditional dwell time distributions fitted by the maximum likelihood method reveal at least three open and closed exponential components. Trains of low open probability (P(o)) bursts were interspersed with trains of high P(o) bursts (> or = 0.8) in all the ryanodine receptor isotypes tested. The gating kinetics of the Ca2+ release channels were defined in long recordings by analyzing burst sequences and gamma distributions of average intraburst open (T(o)) and closed times (Tc). The gamma distributions of T(o) had two gamma components, suggesting the existence of two distinct burst types. In contrast, the gamma distributions of Tc had only one component. The correlation between consecutive burst pairs was defined in terms of T(o) and then statistically tested by 2 x 2 matrix contingency analysis. The probability that the ubiquitous sequential burst pattern was generated by random occurrence was < 0.01 (two-tailed Fisher's exact test). Temporal correlations were observed in all ryanodine receptor isotypes under a variety of experimental conditions. These data strongly suggest that single Ca2+ release channels switch slowly between modes of gating. We propose that the effects of agonists of Ca2+ release channels such as Ca2+ itself can be explained as concentration-dependent changes in the availability of each mode.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3