ASH1L contributes to oocyte apoptosis by regulating DNA damage

Author:

Zhang Tuo123,Ren Tianhe1,Lin Huan1,Tong Yuntong1,Zhang Jixian1,Nie Jie1,Zhu Yingjie1,Wang Yiting1,Jin Bangming1,Zhang Chunlin2,Chen Tengxiang1234,He Meina23ORCID

Affiliation:

1. Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, China

2. College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, China

3. Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China

4. Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China

Abstract

In female mammals, the size of the initially established primordial follicle pool within the ovaries determines the reproductive life span. Interestingly, the establishment of the primordial follicle pool is accompanied by a remarkable programmed oocyte loss for unclear reasons. Here, we identify a new role of ASH1-like histone lysine methyltransferase (ASH1L) in controlling the apoptosis of oocytes during meiotic prophase I in mice. Our results showed that overexpression of Ash1l led to a dramatic loss of fetal oocytes via apoptosis, which subsequently resulted in a reduced capacity of the primordial follicle pool. Overexpression of Ash1l also led to a deficiency in DNA double-strand break repair associated with premature upregulation of p63 and phosphorylated checkpoint kinase 2 (p-CHK2), the major genome guardian of the female germline, following Ash1l overexpression in fetal ovaries. In summary, ASH1L is one of the indispensable epigenetic molecules that acts as a guardian of the genome. It protects oocyte genome integrity and removes oocytes with serious DNA damage by regulating the expression of p63 and p-CHK2 during meiotic prophase I in mice. Our study provides a perspective on the physiological regulatory role of DNA damage checkpoint signaling in fetal oocyte guardianship and female fertility.

Funder

National Natural Science Foundation of China

Guizhou Medical University

China Postdoctoral Science Foundation

Guizhou Provincial Health Commission

Guizhou Provincial Science and Technology Project

Innovation and Entrepreneurship Training Program for College Students in Guizhou Province

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3