Affiliation:
1. Department of Medicine, University of Florida, and
2. Medical Research Service, Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida 32608-1197
Abstract
We investigated whether nitric oxide (NO) upregulates a cyclic nucleotide-gated (CNG) channel and whether this contributes to sustained elevation of intracellular calcium levels ([Ca2+]i) in porcine pulmonary artery endothelial cells (PAEC). Exposure of PAEC to an NO donor, NOC-18 (1 mM), for 18 h increased the protein and mRNA levels of CNGA2 40 and 50%, respectively ( P < 0.05). [Ca2+]iin NO-treated cells was increased 50%, and this increase was maintained for up to 12 h after removal of NOC-18 from medium. Extracellular calcium is required for the increase in [Ca2+]iin NO-treated cells. Thapsigargin induced a rapid cytosolic calcium rise, whereas both a CNG and a nonselective cation channel blocker caused a faster decline in [Ca2+]i, suggesting that capacitive calcium entry contributes to the elevated calcium levels. Antisense inhibition of CNGA2 expression attenuated the NO-induced increases in CNGA2 expression and [Ca2+]iand in capacitive calcium entry. Our results demonstrate that exogenous NO upregulates CNGA2 expression and that this is associated with elevated [Ca2+]iand capacitive calcium entry in porcine PAEC.
Publisher
American Physiological Society
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献