Type 1 inositol 1,4,5-trisphosphate receptors mediate UTP-induced cation currents, Ca2+signals, and vasoconstriction in cerebral arteries

Author:

Zhao Guiling,Adebiyi Adebowale,Blaskova Eva,Xi Qi,Jaggar Jonathan H.

Abstract

Inositol 1,4,5-trisphosphate receptors (IP3Rs) regulate diverse physiological functions, including contraction and proliferation. There are three IP3R isoforms, but their functional significance in arterial smooth muscle cells is unclear. Here, we investigated relative expression and physiological functions of IP3R isoforms in cerebral artery smooth muscle cells. We show that 2-aminoethoxydiphenyl borate and xestospongin C, membrane-permeant IP3R blockers, reduced Ca2+wave activation and global intracellular Ca2+([Ca2+]i) elevation stimulated by UTP, a phospholipase C-coupled purinergic receptor agonist. Quantitative PCR, Western blotting, and immunofluorescence indicated that all three IP3R isoforms were expressed in acutely isolated cerebral artery smooth muscle cells, with IP3R1 being the most abundant isoform at 82% of total IP3R message. IP3R1 knockdown with short hairpin RNA (shRNA) did not alter baseline Ca2+wave frequency and global [Ca2+]ibut abolished UTP-induced Ca2+wave activation and reduced the UTP-induced global [Ca2+]ielevation by ∼61%. Antibodies targeting IP3R1 and IP3R1 knockdown reduced UTP-induced nonselective cation current ( Icat) activation. IP3R1 knockdown also reduced UTP-induced vasoconstriction in pressurized arteries with both intact and depleted sarcoplasmic reticulum (SR) Ca2+by ∼45%. These data indicate that IP3R1 is the predominant IP3R isoform expressed in rat cerebral artery smooth muscle cells. IP3R1 stimulation contributes to UTP-induced Icatactivation, Ca2+wave generation, global [Ca2+]ielevation, and vasoconstriction. In addition, IP3R1 activation constricts cerebral arteries in the absence of SR Ca2+release by stimulating plasma membrane Icat.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3