Affiliation:
1. Magnetic Resonance Unit, Department of Veteran Affairs Medical Center,San Francisco, California.
Abstract
The goal of this study was to determine the effects of intracellular acidosis (pH approximately 6.3) of frog skeletal muscle on force and on intracellular Ca2+ concentration ([Ca2+]i; measured at 20 degrees C using indo 1 fluorescence). Acidosis reduced tetanic force by only 11 +/- 2% (mean +/- SE, n = 8) but increased tetanic [Ca2+]i by 33 +/- 6%, suggesting that acidosis reduced the maximum Ca(2+)-activated force. During relaxation, the [Ca2+]i at half-maximal force was doubled with acidosis, suggesting that acidosis altered the Ca(2+)-force relationship. Acidosis markedly slowed force relaxation and [Ca2+]i decline (time constants fitted to force and [Ca2+]i during relaxation increased by 133 +/- 20 and 68 +/- 13%, respectively, with acidosis), suggesting that slowed force relaxation with acidosis may arise from slowed Ca2+ clearance from the cytosol. Late in relaxation, at approximately 30% of initial force, there was a transient phase of [Ca2+]i increase that was delayed with acidosis in proportion to the slowing of force relaxation. This is consistent with previous suggestions that dissociation of cross-bridges from the thin filament during relaxation promotes Ca2+ release to the cytosol from troponin. This study concludes that in skeletal muscle acidosis has little effect on tetanic force and that the major effects are decreased Ca2+ sensitivity and slower relaxation.
Publisher
American Physiological Society
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献