Affiliation:
1. Department of Biochemistry, University of Oxford, United Kingdom.
Abstract
The relationship between substrate and metabolism in vascular smooth muscle has been investigated by studying the acute energetic effects caused by the creatine analogue beta-guanidinopropionic acid (beta-GPA) on porcine carotid arteries using 31P-nuclear magnetic resonance (NMR). Porcine carotid arteries were superfused for 12 h with Krebs-Henseleit buffer at 22 degrees C, containing 50 mM beta-GPA, and either 11 mM glucose or 5 mM pyruvate as substrate. beta-GPA enters the cells and becomes phosphorylated by creatine kinase to produce beta-GPA-P. Perfusion with beta-GPA leads to the formation of NMR observable beta-GPA-P (after 2.5 h). The appearance of beta-GPA-P with time was significantly greater when glucose was used as substrate. To differentiate between oxidative and glycolytic metabolism in the phosphorylation of beta-GPA, 1 mM cyanide was included in the perfusion buffer containing 50 mM beta-GPA and 11 mM glucose. No phosphocreatine (PCr) was observed with these conditions, and there was a small but significant decrease in ATP concentration ([ATP]) compared with glucose perfusion without cyanide (0.56 +/- 0.02 to 0.47 +/- 0.02 mumol/g wet wt), that was greater than the concentration with pyruvate as substrate (0.25 +/- 0.03 mumol/g wet wt). Thus the [ATP] during cyanide treatment is maintained with glycolytic metabolism. Despite the relatively high [ATP], accumulation of beta-GPA-P only occurred over a much slower time course ( > 10 h) than without cyanide.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
American Physiological Society
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献