Shear stress inhibits adhesion of cultured mouse endothelial cells to lymphocytes by downregulating VCAM-1 expression

Author:

Ando J.1,Tsuboi H.1,Korenaga R.1,Takada Y.1,Toyama-Sorimachi N.1,Miyasaka M.1,Kamiya A.1

Affiliation:

1. Department of Cardiovascular Biomechanics, Faculty of Medicine,University of Tokyo, Japan.

Abstract

Monolayers of endothelial cells (EC) cultured from mouse lymph nodes were exposed to controlled levels of shear stress (0-7.1 dyn/cm2) in a parallel plate flow chamber, and binding between the flow-loaded EC and mouse lymph node-derived lymphocytes was assayed. A large number of lymphocytes adhered to the stationary control EC, but in EC exposed to a shear stress of 1.5 dyn/cm2 for 6 h, the adhesion decreased to 68.8 +/- 12.8% (SD; n = 19) of control (n = 29, P < 0.001). The decrease in adhesion induced by flow loading was time and shear stress dependent and reversible. Treatment of stationary EC with a monoclonal antibody (MAb) to vascular cell adhesion molecule-1 (VCAM-1) reduced the adhesion to 70.6 +/- 11.5% (n = 19) of control (P < 0.001), whereas MAb to CD44 and to intercellular adhesion molecule-1 had no effect on it. Flow cytometric analysis revealed that the amount of VCAM-1 expressed on the cell surface was decreased to 48.5 +/- 15.8% (n = 6) of control by flow loading (P < 0.001). Flow loading experiments using two perfusates with different viscosities demonstrated that the decrease in VCAM-1 expression due to flow was shear stress rather than shear rate dependent. The detection of mRNA by reverse transcriptase-polymerase chain reaction showed that VCAM-1 mRNA levels were markedly depressed in EC exposed to flow loading.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 179 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vascularized Tissue Organoids;Bioengineering;2023-01-17

2. Endothelin system expression in the kidney following cisplatin-induced acute kidney injury in male and female mice;Canadian Journal of Physiology and Pharmacology;2022-09-01

3. Translating the force—mechano-sensing GPCRs;American Journal of Physiology-Cell Physiology;2022-06-01

4. Methods for vascularization and perfusion of tissue organoids;Mammalian Genome;2022-03-25

5. Cell migration in cardiovascular diseases;Cell Movement in Health and Disease;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3