Regulation of vimentin intermediate filaments in endothelial cells by hypoxia

Author:

Liu Tiegang1,Guevara Oscar E.1,Warburton Rod R.1,Hill Nicholas S.1,Gaestel Matthias2,Kayyali Usamah S.1

Affiliation:

1. Pulmonary and Critical Care Division, Department of Medicine/Tupper Research Institute, Tufts Medical Center, and Tufts University School of Medicine, Boston, Massachusetts; and

2. Institute of Biochemistry, Hannover Medical School, Hannover, Germany

Abstract

Hypoxia triggers responses in endothelial cells that play roles in many conditions including high-altitude pulmonary edema and tumor angiogenesis. Signaling pathways activated by hypoxia modify cytoskeletal and contractile proteins and alter the biomechanical properties of endothelial cells. Intermediate filaments are major components of the cytoskeleton whose contribution to endothelial physiology is not well understood. We have previously shown that hypoxia-activated signaling in endothelial cells alters their contractility and adhesiveness. We have also linked p38-MAP kinase signaling pathway leading to HSP27 phosphorylation and increased actin stress fiber formation to endothelial barrier augmentation. We now show that vimentin, a major intermediate filament protein in endothelial cells, is regulated by hypoxia. Our results indicate that exposure of endothelial cells to hypoxia causes vimentin filament networks to initially redistribute perinuclearly. However, by 1 hour hypoxia these networks reform and appear more continuous across cells than under normoxia. Hypoxia also causes transient changes in vimentin phosphorylation, and activation of PAK1, a kinase that regulates vimentin filament assembly. In addition, exposure to 1 hour hypoxia increases the ratio of insoluble/soluble vimentin. Overexpression of phosphomimicking mutant HSP27 (pmHSP27) causes changes in vimentin distribution that are similar to those observed in hypoxic cells. Knocking-down HSP27 destroys the vimentin filamentous network, and disrupting vimentin filaments with acrylamide increases endothelial permeability. Both hypoxia- and pmHSP27 overexpression-induced changes are reversed by inhibition of phosphatase activity. In conclusion hypoxia causes redistribution of vimentin to a more insoluble and extensive filamentous network that could play a role in endothelial barrier stabilization. Vimentin redistribution appears to be mediated through altering the phosphorylation of the protein and its interaction with HSP27.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3