Position Sensitivity of Feline Paraspinal Muscle Spindles to Vertebral Movement in the Lumbar Spine

Author:

Cao Dong-Yuan,Pickar Joel G.,Ge Weiginq,Ianuzzi Allyson,Khalsa Partap S.

Abstract

Muscle spindles contribute to sensorimotor control by supplying feedback regarding muscle length and consequently information about joint position. While substantial study has been devoted to determining the position sensitivity of spindles in limb muscles, there appears to be no data on their sensitivity in the low back. We determined the relationship between lumbar paraspinal muscle spindle discharge and paraspinal muscle lengthening estimated from controlled cranialward movement of the L6vertebra in anesthetized cats. Ramp (0.4 mm/s) and hold displacements (0.2, 0.4, 0.6, 0.8, and 1.2 mm for 2.5 s) were applied at the L6spinous process. Position sensitivity was defined as the slope of the relationship between the estimated increase in muscle length and mean instantaneous frequency at each length. To enable comparisons with appendicular muscle spindles where joint angle was measured, we also calculated sensitivity in terms of the L6and L7intervertebral flexion angle (IVA). This angle was estimated from measurements of facet joint capsule strain (FJC) based on a previously established relationship between IVA and FJC strain in the cat lumbar vertebral column during lumbar flexion. Single-unit recordings were obtained from 12 muscle spindle afferents. Longissimus and multifidus muscles contained the receptive field of 10 and 2 afferents, respectively. Mean position sensitivity was 16.3 imp·s−1·mm−1[10.6–22.1, 95% confidence interval (CI), P < 0.001]. Mean angular sensitivity was 5.2 imp·s−1·°−1(2.6–8.0, P < 0.003). These slope estimates were more than 3.5 times greater compared with appendicular muscle spindles, and their CIs did not contain previous slope estimates for the sensitivity of appendicular spindles from the literature. Potential reasons for and the significance of the apparently high position sensitivity in the lumbar spine are discussed.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3