An Optimization Principle for Determining Movement Duration

Author:

Tanaka Hirokazu,Krakauer John W.,Qian Ning

Abstract

Movement duration is an integral component of motor control, but nearly all extant optimization models of motor planning prefix duration instead of explaining it. Here we propose a new optimization principle that predicts movement duration. The model assumes that the brain attempts to minimize movement duration under the constraint of meeting an accuracy criterion. The criterion is task and context dependent but is fixed for a given task and context. The model determines a unique duration as a trade-off between speed (time optimality) and accuracy (acceptable endpoint scatter). We analyzed the model for a linear motor plant, and obtained a closed-form equation for determining movement duration. By solving the equation numerically with specific plant parameters for the eye and arm, we found that the model can reproduce saccade duration as a function of amplitude (the main sequence), and arm-movement duration as a function of the ratio of target distance to size (Fitts's law). In addition, it explains the dependency of peak saccadic speed on amplitude and the dependency of saccadic duration on initial eye position. Furthermore, for arm movements, the model predicts a scaling relationship between peak velocity and distance and a reduction in movement duration with a moderate increase in viscosity. Finally, for a linear plant, our model predicts a neural control signal identical to that of the minimum-variance model set to the same movement duration. This control signal is a smooth function of time (except at the endpoint), in contrast to the discontinuous bang–bang control found in the time-optimal control literature. We suggest that one aspect of movement planning, as revealed by movement duration, may be to assign an endpoint accuracy criterion for a given task and context.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference44 articles.

1. Abel LA, Dell'Osso LF, Daroff RB, and Parker L. Saccades in extremes of lateral gaze. Invest Ophthalmol Vis Sci 18: 324–327, 1979.

2. The main sequence, a tool for studying human eye movements

3. Quantitative measurement of saccade amplitude, duration, and velocity

4. Failure to detect displacement of the visual world during saccadic eye movements

5. Bryson AE and Ho YC. Applied Optimal Control. New York: Hempshire–Wiley, 1975.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3