Affiliation:
1. Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
Abstract
A strong positive association exists between the ingestion of alcohol and sweet-tasting solutions. The neural mechanisms underlying this relationship are unknown, although recent data suggest that gustatory substrates are involved. Here, we examined the role of sweet taste receptors and central neural circuits for sugar taste in the gustatory processing of ethanol. Taste responses to ethanol (3, 5, 10, 15, 25, and 40% vol/vol) and stimuli of different taste qualities (e.g., sucrose, NaCl, HCl, and quinine-HCl) were recorded from neurons of the nucleus of the solitary tract in anesthetized rats prior to and after oral application of the sweet receptor blocker gurmarin. The magnitude of ethanol-evoked activity was compared between sucrose-responsive ( n = 21) and sucrose-unresponsive ( n = 20) neurons and the central neural representation of ethanol taste was explored using multivariate analysis. Ethanol produced robust concentration-dependent responses in sucrose-responsive neurons that were dramatically larger than those in sucrose-unresponsive cells. Gurmarin selectively and similarly inhibited ethanol and sucrose responses, leaving NaCl, HCl, and quinine responses unaltered. Across-neuron patterns of response to ethanol were most similar to those evoked by sucrose, becoming increasingly more so as the ethanol concentration was raised. Results implicate taste receptors for sucrose as candidate receptors for ethanol and reveal that alcohol and sugar taste are represented similarly by gustatory activity in the CNS. These findings have important implications for the sensory and reward properties of alcohol.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献