Antioxidant activity of nitro derivative of aspirin against ischemia-reperfusion in hamster cheek pouch microcirculation

Author:

Bertuglia Silvia,Giusti Andrea,Del Soldato Piero

Abstract

Aspirin that has been chemically combined with a nitric oxide (NO) donor (NCX-4016) has been shown to inhibit cyclooxygenase and prostaglandin generation while maintaining the inhibitory effects of aspirin. The possible role of reactive oxygen species (ROS) in the action of NCX-4016 in ischemia-reperfusion (I/R) has not been studied. Furthermore, we were interested in comparing the effects of a conventional NO donor [2,2′-hydroxynitrosohydrazino-bis-etanamine (DETA/NO)] and NCX-4016 at the microvascular level in the hamster cheek pouch visualized by using an intravital fluorescent microscopy technique. Microvascular injury was assessed by measuring diameter change, the perfused capillary length (PCL), and leukocyte adhesion. Animals were treated with NCX-4016 (100 mg/kg or 30 mg·kg-1·day-1 for 5 days po) or DETA-NO (0.5 mg/kg). Mean arterial blood pressure increased slightly but significantly after NCX-4016 treatment. During 5- and 15-min reperfusion, lipid peroxides in the systemic blood increased by 72 and 89% vs. baseline, respectively, and were still higher than in basal conditions after 30-min reperfusion in the I/R group. Pretreatment with NCX-4016 maintained ROS at normal levels; increased arteriolar diameter, blood flow, and PCL; and decreased leukocyte adhesion ( P < 0.05). DETA-NO decreased ROS during 30-min reperfusion; however, later there was a significant increase during reperfusion. DETA-NO decreased leukocyte adhesion ( P < 0.05) but microvascular permeability increased after 30 min of reperfusion. In conclusion, NCX-4016 attenuates oxidative stress and prevents arteriolar constriction during I/R, whereas DETA-NO increases lipid peroxides in the systemic blood and permeability after reperfusion.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3