Affiliation:
1. Department of Veterinary Physiology, Free University of Berlin, 14163 Berlin, Germany
Abstract
The K+-insensitive component of Mg2+ influx in primary culture of ruminal epithelial cells (REC) was examined by means of fluorescence techniques. The effects of extracellular anions, ruminal fermentation products, and transport inhibitors on the intracellular free Mg2+ concentration ([Mg2+]i), Mg2+ uptake, and intracellular pH were determined. Under control conditions (HEPES-buffered high-NaCl medium), the [Mg2+]i of REC increased from 0.56 ± 0.14 to 0.76 ± 0.06 mM, corresponding to a Mg2+ uptake rate of 15 μM/min. Exposure to butyrate did not affect Mg2+ uptake, but it was stimulated (by 84 ± 19%) in the presence of [Formula: see text]. In contrast, Mg2+ uptake was strongly diminished if REC were suspended in [Formula: see text]-buffered high-KCl medium (22.3 ± 4 μM/min) rather than in HEPES-buffered KCl medium (37.5 ± 6 μM/min). After switching from high- to low-Cl– solution, [Mg2+]i was reduced from 0.64 ± 0.09 to 0.32 ± 0.16 mM and the [Formula: see text]-stimulated Mg2+ uptake was completely inhibited. Bumetanide and furosemide blocked the rate of Mg2+ uptake by 64 and 40%, respectively. Specific blockers of vacuolar H+-ATPase reduced the [Mg2+]i (36%) and Mg2+ influx (38%) into REC. We interpret this data to mean that the K+-insensitive Mg2+ influx into REC is mediated by a cotransport of Mg2+ and Cl– and is energized by an H+-ATPase. The stimulation of Mg2+ transport by ruminal fermentation products may result from a modulation of the H+-ATPase activity.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献