Affiliation:
1. Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada;
2. Department of Paediatrics and Physiology, University of Toronto, Toronto, Ontario, Canada
Abstract
Infantile hypertrophic pyloric stenosis (IHPS) is a common disease of unknown etiology. The tetrahydrobiopterin (BH4)-deficient hyperphenylalaninemia-1 ( hph-1) newborn mouse has a similar phenotype to the human condition. For hph-1 and wild-type control animals, pyloric tissue agonist-induced contractile properties, reactive oxygen species (ROS) generation, cGMP, neuronal nitric oxide synthase (nNOS) content, and Rho-associated protein kinase 2 (ROCK-2) expression and activity were evaluated. Primary pyloric smooth muscle cells from wild-type newborn animals were utilized to evaluate the effect of BH4 deficiency. One-week-old hph-1 mice exhibited a fourfold increase ( P < 0.01) in the pyloric sphincter muscle contraction magnitude but similar relaxation values when compared with wild-type animals. The pyloric tissue nNOS expression and cGMP content were decreased, whereas the rate of nNOS uncoupling increased ( P < 0.01) in 1-wk-old hph-1 mice when compared with wild-type animals. These changes were associated with increased pyloric tissue ROS generation and elevated ROCK-2 expression/activity ( P < 0.05). At 1–3 days of age and during adulthood, the gastric emptying rate of the hph-1 mice was not altered, and there were no genotype differences in pyloric tissue ROS generation, nNOS expression, or ROCK-2 activity. BH4 inhibition in pyloric smooth muscle cells resulted in increased ROS generation ( P < 0.01) and ROCK-2 activity ( P < 0.05). Oxidative stress upregulated ROCK-2 activity in pyloric tissue, but no changes were observed in newborn fundal tissue in vitro. We conclude that ROS-induced upregulation of ROCK-2 expression accounts for the increased pyloric sphincter tone and nNOS downregulation in the newborn hph-1 mice. The role of ROCK-2 activation in the pathogenesis of IHPS warrants further study.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献