RNA-seq implicates deregulation of the immune system in the pathogenesis of diverticulitis

Author:

Schieffer Kathleen M.1ORCID,Choi Christine S.1,Emrich Scott1,Harris Leonard1,Deiling Sue1,Karamchandani Dipti M.2,Salzberg Anna3,Kawasawa Yuka I.34,Yochum Gregory S.15,Koltun Walter A.1

Affiliation:

1. Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania;

2. Division of Anatomic Pathology, Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania;

3. Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania;

4. Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and

5. Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania

Abstract

Individuals with diverticula or outpouchings of the colonic mucosa and submucosa through the colonic wall have diverticulosis, which is usually asymptomatic. In 10-25% of individuals, the diverticula become inflamed, resulting in diverticulitis. Very little is known about the pathophysiology or gene regulatory pathways involved in the development of diverticulitis. To identify these pathways, we deep sequenced RNAs isolated from full-thickness sections of sigmoid colon from diverticulitis patients and control individuals. Specifically for diverticulitis cases, we analyzed tissue adjacent to areas affected by chronic disease. Since the tissue was collected during elective sigmoid resection, the disease was in a quiescent state. A comparison of differentially expressed genes found that gene ontology (GO) pathways associated with the immune response were upregulated in diverticulitis patients compared with nondiverticulosis controls. Next, weighted gene coexpression network analysis was performed to identify the interaction among coexpressed genes. This analysis revealed RASAL3, SASH3, PTPRC, and INPP5D as hub genes within the brown module eigengene, which highly correlated ( r = 0.67, P = 0.0004) with diverticulitis. Additionally, we identified elevated expression of downstream interacting genes. In summary, transcripts associated with the immune response were upregulated in adjacent tissue from the sigmoid colons of chronic, recurrent diverticulitis patients. Further elucidating the genetic or epigenetic mechanisms associated with these alterations can help identify those at risk for chronic disease and may assist in clinical decision management. NEW & NOTEWORTHY By using an unbiased approach to analyze transcripts expressed in unaffected colonic tissues adjacent to those affected by chronic diverticulitis, our study implicates that a defect in the immune response may be involved in the development of the disease. This finding expands on the current data that suggest the pathophysiology of diverticulitis is mediated by dietary, age, and obesity-related factors. Further characterizing the immunologic differences in diverticulitis may better inform clinical decision-making.

Funder

Carlino Fund for IBD Research

National Center for Advancing Translational Sciences (NCATS)

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3