The role of mucin O-glycans in microbiota dysbiosis, intestinal homeostasis, and host-pathogen interactions

Author:

Fekete Elena1ORCID,Buret Andre G.1ORCID

Affiliation:

1. Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada

Abstract

Mucin O-linked glycans are important mediators of host-microbiota-pathogen interactions in the gastrointestinal tract. The major component of intestinal mucus, the MUC2 mucin, is densely glycosylated, with up to 80% of its weight-to-volume ratio represented by O-linked glycans. Glycosylation of secretory gel-forming mucins has an enormous impact on intestinal barrier function, microbial metabolism, and mucus colonization by both pathogenic and commensal microbes. Mucin O-glycans and glycan-derived sugars may be degraded and used as a nutrient source and may regulate microbial gene expression and virulence. Short-chain fatty acids, produced as a by-product of glycan fermentation, can regulate host immunity and goblet cell activity and are important for host-microbe homeostasis. Mucin glycans may also act as microbial binding sites, influencing intestinal colonization and translocation through the mucus gel barrier. Recent findings indicate that alterations to mucin glycosylation impact the susceptibility of mucins to degradation, resulting in altered barrier function and intestinal permeability. Alterations to mucin glycosylation patterns are frequently observed during intestinal infection and inflammation and have been implicated in microbiota dysbiosis and expansion of pathobionts. Recent work has demonstrated that these alterations can play key roles in disease pathogenesis. The precise mechanisms remain obscure. This review highlights the important roles of O-linked glycans in host-microbe interactions and disease pathogenesis in the context of intestinal infections.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3