Elevated intracellular trypsin exacerbates acute pancreatitis and chronic pancreatitis in mice

Author:

Zhan Xianbao12,Wan Jianhua1,Zhang Guowei13,Song Lele2,Gui Fu1,Zhang Yuebo1,Li Yinghua1,Guo Jia1,Dawra Rajinder K.4,Saluja Ashok K.4,Haddock Ashley N.1,Zhang Lizhi5,Bi Yan6,Ji Baoan1

Affiliation:

1. Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida

2. Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, China

3. Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China

4. Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida

5. Department of Pathology, Mayo Clinic, Rochester, Minnesota

6. Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida

Abstract

Intra-acinar trypsinogen activation occurs in the earliest stages of pancreatitis and is believed to play important roles in pancreatitis pathogenesis. However, the exact role of intra-acinar trypsin activity in pancreatitis remains elusive. Here, we aimed to examine the specific effects of intra-acinar trypsin activity on the development of pancreatitis using a transgenic mouse model. This transgenic mouse model allowed for the conditional expression of a mutant trypsinogen that can be activated specifically inside pancreatic acinar cells. We found that expression of this active mutated trypsin had no significant effect on triggering spontaneous pancreatitis. Instead, several protective compensatory mechanisms, including SPINK1 and heat shock proteins, were upregulated. Notably, these transgenic mice developed much more severe acute pancreatitis, compared with control mice, when challenged with caerulein. Elevated tissue edema, serum amylase, inflammatory cell infiltration and acinar cell apoptosis were dramatically associated with increased trypsin activity. Furthermore, chronic pathological changes were observed in the pancreas of all transgenic mice, including inflammatory cell infiltration, parenchymal atrophy and cell loss, fibrosis, and fatty replacement. These changes were not observed in control mice treated with caerulein. The alterations in pancreata from transgenic mice mimicked the histological changes common to human chronic pancreatitis. Taken together, we provided in vivo evidence that increased intra-acinar activation of trypsinogen plays an important role in the initiation and progression of both acute and chronic pancreatitis. NEW & NOTEWORTHY Trypsinogen is activated early in pancreatitis. However, the roles of trypsin in the development of pancreatitis have not been fully addressed. Using a genetic approach, we showed trypsin activity is critical for the severity of both acute and chronic pancreatitis.

Funder

HHS | NIH | National Cancer Institute (NCI)

DOD | Congressionally Directed Medical Research Programs (CDMRP)

National Natural Science Foundation of China (NSFC)

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3