Nutrient modulation of intestinal gas dynamics in healthy humans: dependence on caloric content and meal consistency

Author:

Gonlachanvit Sutep,Coleski Radoslav,Owyang Chung,Hasler William L.

Abstract

The actions of nutrients on gut transit of liquids and solids have been extensively studied, but the effects of meal ingestion on intestinal gas flow are unexplored. We hypothesized that meals of varying caloric content and consistency modulate gas transit to different degrees. Nine healthy volunteers underwent jejunal perfusion of physiological gas mixtures at 12 ml·min−1·3 h, with ingestion of nothing (control), water (240 ml), 240-kcal liquid meals, and 240-kcal solid meals at the end of the second hour in separate studies. Gas was quantified from an intrarectal catheter. After an initial lag phase, gas evacuation approached steady state by the end of the fasting period. Solid and liquid caloric meals increased total gas volumes evacuated from 5–40 min after ingestion vs. control studies ( P < 0.05). These increases resulted from increased numbers of bolus gas evacuations ( P < 0.05), whereas bolus volumes, pressures, and flow rates were similar for all test conditions. Solid and liquid caloric meals elicited similar effects on bolus gas dynamic parameters, whereas water did not affect these measures vs. control (NS, not significant). Both caloric meals and the noncaloric liquid meal increased continuous gas flow, which represented <2% of total gas expulsion. In conclusion, caloric meals promote bolus gas transit in healthy humans, whereas noncaloric liquids have no effect. Solids stimulate early postprandial gas dynamics to the same extent as liquid meals of similar caloric content. Thus modulatory effects of meals on intestinal gas transit depend on their caloric content but not their consistency.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3