ANIT toxicity toward mouse hepatocytes in vivo is mediated primarily by neutrophils via CD18

Author:

Kodali Pratima,Wu Ping,Lahiji Parshawn A.,Brown Eric J.,Maher Jacquelyn J.

Abstract

α-Naphthylisothiocyanate (ANIT) is a hepatotoxicant that causes acute cholestatic hepatitis with infiltration of neutrophils around bile ducts and necrotic hepatocytes. The objective of this study was to determine whether the β2-integrin CD18, which plays an important role in leukocyte invasion and cytotoxicity, contributes to ANIT-induced hepatic inflammation and liver injury. Mice with varying levels of leukocyte CD18 expression were treated with ANIT and monitored for hepatic neutrophil influx and liver injury over 48 h. Mice that were partially deficient in CD18 (30% of normal levels) developed periportal inflammation and widespread hepatic necrosis after ANIT treatment in a pattern identical to that in wild-type (WT) mice. In contrast, mice that completely lack CD18 (CD18 null) were resistant to ANIT toxicity. Forty-eight hours after ANIT, CD18-null mice displayed 60% lower serum alanine aminotransferase (ALT) levels and 75% less hepatic necrosis, as shown by morphometry, than WT mice. This was true despite evidence that ANIT still provoked hepatic neutrophil influx in CD18-null mice. WT mice could also be protected from ANIT-induced hepatocellular necrosis, by depleting the animals of neutrophils. Notably, neither CD18-null mice nor neutrophil-depleted WT mice exhibited any attenuation of bile duct injury or cholestasis due to ANIT. We conclude from these experiments that neutrophils invade ANIT-treated livers in a CD18-independent fashion but utilize CD18 to induce hepatocellular cytotoxicity. The results emphasize that neutrophil-mediated amplification of ANIT-induced liver injury is directed toward hepatocytes rather than cholangiocytes. In fact, the data indicate that the majority of ANIT toxicity toward hepatocytes in vivo is neutrophil driven.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3