Alterations in mechanical properties of mesenteric resistance arteries in experimental portal hypertension

Author:

Resch Markus1,Wiest Reiner2,Moleda Lukas2,Fredersdorf Sabine1,Stoelcker Benjamin1,Schroeder Josef A.3,Schölmerich Juergen2,Endemann Dierk H.1

Affiliation:

1. II, School of Medicine, University Hospital, Regensburg;

2. Department of Internal Medicine1I and

3. Institute of Pathology, School of Medicine, University Hospital, Regensburg, Germany

Abstract

Splanchnic vasodilation is the pathophysiological hallmark in the development of the hyperdynamic circulatory syndrome in liver cirrhosis and portal hypertension. This has been attributed so far mainly to a marked vascular hyporeactivity to endogenous vasoconstrictors. However, myogenic tone and vessel stiffness have not been addressed in mesenteric arteries in liver cirrhosis. CCl4-induced ascitic cirrhotic (LC) and age-matched control rats, portal vein-ligated (PVL) rats, and sham-operated rats were investigated. Third-order mesenteric resistance arteries were studied under no-flow conditions using a pressure myograph measuring media thickness and lumen diameter in response to incremental increases in intramural pressure, from which wall mechanics were calculated. Electron microscopy was used for investigation of wall ultrastructure, especially the fenestrae in internal elastic lamina (IEL). In PVL animals, no significant change in passive vessel strain, stress, media-to-lumen ratio, or cross-sectional area was noted. In contrast, in LC rats, vessel strain was markedly elevated compared with healthy control rats, indicating a marked reduction in vessel stiffness. In addition, the strain-stress curve was shifted to the right, and the elastic modulus in dependency on vessel stress decreased, demonstrating predominantly structure-dependent factors to be involved. The media-to-lumen quotient was not significantly altered, but cross-sectional area was highly increased in LC rats, indicating hypertrophic outward remodeling. These findings were paralleled by enlarged fenestrae in the IEL but no change in thickness of IEL or proportion of extracellular matrix or vascular smooth muscle in LC rats. We concluded that, in long-standing severe portal hypertension such as ascitic LC but not in short-term conditions such as PVL, mesenteric resistance arteries exhibit vascular remodeling and markedly less resistant mechanical properties, leading to decreased vessel stiffness accompanied by structural changes in the IEL. This may well contribute to the maintenance and severity of splanchnic arterial vasodilation in LC.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3