Noninvasive stool-based detection of infant gastrointestinal development using gene expression profiles from exfoliated epithelial cells

Author:

Chapkin Robert S.12,Zhao Chen3,Ivanov Ivan24,Davidson Laurie A.12,Goldsby Jennifer S.12,Lupton Joanne R.12,Mathai Rose Ann5,Monaco Marcia H.5,Rai Deshanie6,Russell W. Michael6,Donovan Sharon M.5,Dougherty Edward R.23

Affiliation:

1. Program in Integrative Nutrition and Complex Diseases,

2. Center for Environmental and Rural Health, and

3. Departments of 3Electrical Engineering and

4. Veterinary Physiology and Pharmacology, Texas A & M University, College Station, Texas;

5. Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Illinois; and

6. Mead Johnson Nutrition, Evansville, Indiana

Abstract

We have developed a novel molecular methodology that utilizes stool samples containing intact sloughed epithelial cells to quantify intestinal gene expression profiles in the developing human neonate. Since nutrition exerts a major role in regulating neonatal intestinal development and function, our goal was to identify gene sets (combinations) that are differentially regulated in response to infant feeding. For this purpose, fecal mRNA was isolated from exclusively breast-fed ( n = 12) and formula-fed ( n = 10) infants at 3 mo of age. Linear discriminant analysis was successfully used to identify the single genes and the two- to three-gene combinations that best distinguish the feeding groups. In addition, putative “master” regulatory genes were identified using coefficient of determination analysis. These results support our premise that mRNA isolated from stool has value in terms of characterizing the epigenetic mechanisms underlying the developmentally regulated transcriptional activation/repression of genes known to modulate gastrointestinal function. As larger data sets become available, this methodology can be extended to validation and, ultimately, identification of the main nutritional components that modulate intestinal maturation and function.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3