Affiliation:
1. Institute for Surgical Research, University of Munich, D-81377 Munich, Germany
Abstract
Activation of poly(ADP-ribose) polymerase (PARP) mediates oxidative stress-induced cell injury. We tested the hypothesis that PARP contributes to ischemia-reperfusion (I/R) damage of the liver by triggering the mechanisms of microcirculatory failure. Leukocyte- and platelet-endothelial cell interactions as well as sinusoidal perfusion were analyzed by intravital fluorescence microscopy after lobar hepatic I/R (90 min/30 min) in C57BL/6 × 129/Sv wild-type (PARP+/+) and PARP-deficient (PARP−/−) mice. Hepatic I/R induced leukocyte/platelet-endothelial cell interactions and tissue injury in PARP+/+ mice, as indicated by impaired sinusoidal perfusion and increased alanine aminotransferase (ALT)/aspartate aminotransferase (AST) serum activities. In PARP−/− mice, however, the postischemic increase in the numbers of rolling/adherent leukocytes and platelets was significantly lower. In addition, I/R-induced translocation of CD62P as well as mRNA expression of CD62E, CD54, and CD106 were attenuated. The degree of perfusion failure was reduced and the increase in the ALT/AST activities was lower in PARP−/− mice compared with PARP+/+ mice. We conclude that PARP contributes to hepatic microvascular injury by triggering the expression/translocation of adhesion molecules and modulating leukocyte/platelet-endothelial cell interactions.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献