Paeoniflorin abrogates DSS-induced colitis via a TLR4-dependent pathway

Author:

Zhang Jingjing12,Dou Wei13,Zhang Eryun12,Sun Aning12,Ding Lili1,Wei Xiaohui1,Chou Guixin4,Mani Sridhar3,Wang Zhengtao124

Affiliation:

1. Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China;

2. Department of Pharmacognosy, China Pharmaceutical University, Nanjing, China;

3. Departments of Medicine and Genetics, Albert Einstein College of Medicine, New York, New York; and

4. Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, China

Abstract

Paeonia lactiflora Pall is one of the most well-known herbs in China, Korea, and Japan for more than 1,200 years. Paeoniflorin, the major bioactive component of peony root, has recently been reported to have anticolitic activity. However, the underlying molecular mechanism is unclear. The present study was to explore the possible mechanism of paeoniflorin in attenuating dextran sulfate sodium (DSS)-induced colitis. Pre- and coadministration of paeoniflorin significantly reduced the severity of colitis and resulted in downregulation of several inflammatory parameters in the colon, including the activity of myeloperoxidase (MPO), the levels of TNF-α and IL-6, and the mRNA expression of proinflammatory mediators (MCP-1, Cox2, IFN-γ, TNF-α, IL-6, and IL-17). The decline in the activation of NF-κB p65, ERK, JNK, and p38 MAPK correlated with a decrease in mucosal Toll-like receptor 4 (TLR4) but not TLR2 or TLR5 expression. In accordance with the in vivo results, paeoniflorin downregulated TLR4 expression, blocked nuclear translocation of NF-κB p65, and reduced the production of IL-6 in LPS-stimulated mouse macrophage RAW264.7 cells. Transient transfection assay performed in LPS-stimulated human colon cancer HT-29 cells indicated that paeoniflorin inhibits NF-κB transcriptional activity in a dose-dependent manner. TLR4 knockdown and overexpression experiments demonstrated a requirement for TLR4 in paeoniflorin-mediated downregulation of inflammatory cytokines. Thus, for the first time, the present study indicates that paeoniflorin abrogates DSS-induced colitis via decreasing the expression of TLR4 and suppressing the activation of NF-κB and MAPK pathways.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3