Effect of osmolality on glucose metabolism in rabbit kidney cortex and medulla in vitro

Author:

Lee James B.1,Vance Vernon K.1,Cahill George F.1

Affiliation:

1. Departments of Medicine, Harvard Medical School and Peter Bent Brigham Hospital, Boston, Massachusetts

Abstract

Slices of rabbit kidney cortex and medulla were incubated aerobically in media of varying osmotic concentrations. When medium osmolality was reduced below 280–300 mosmoles/kg H2O, by means of decreased sodium chloride and sucrose concentrations, there was an osmotically determined increase in cortical glucose utilization and oxidation, lactate production, and slice weight. Between 280 and 300 mosmoles/kg H2O maximal cortical slice weight loss and inhibition of glucose metabolism occurred, with little further change when medium osmolality was increased to 415 mosmoles/kg H2O. With urea, slice weight and relatively maximal glucose metabolism were maintained at all medium osmotic concentrations between 67 and 548 mosmoles/kg H2O. In contrast, slices of kidney medulla revealed a capacity for extensive glucose oxidation in hyperosmotic media (1,066 mosmoles/kg H2O), while maximal lactate production occurred in hypoosmotic media (67 mosmoles/kg H2O). The findings are interpreted as suggestive of responsiveness of cortical and medullary intermediary metabolism to changes in the "effective" extracellular-to-intracellular osmotic gradient.

Publisher

American Physiological Society

Subject

Physiology (medical)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Glycogen metabolism in dog inner medullary collecting ducts;American Journal of Physiology-Renal Physiology;1994-03-01

2. Renal Metabolism: Integrated Responses;Comprehensive Physiology;1992-12

3. Anisosmotic cell volume regulation: a comparative view;American Journal of Physiology-Cell Physiology;1989-08-01

4. Chemically Induced Renal Papillary Necrosis and Upper Urothelial Carcinoma. Part 2;CRC Critical Reviews in Toxicology;1985-01

5. Chemically Induced Renal Papillary Necrosis and Upper Urothelial Carcinoma. Part 1;CRC Critical Reviews in Toxicology;1985-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3