Can modular strategies simplify neural control of multidirectional human locomotion?

Author:

Zelik Karl E.1,La Scaleia Valentina2,Ivanenko Yuri P.1,Lacquaniti Francesco123

Affiliation:

1. Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy;

2. Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; and

3. Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy

Abstract

Each human lower limb contains over 50 muscles that are coordinated during locomotion. It has been hypothesized that the nervous system simplifies muscle control through modularity, using neural patterns to activate muscles in groups called synergies. Here we investigate how simple modular controllers based on invariant neural primitives (synergies or patterns) might generate muscle activity observed during multidirectional locomotion. We extracted neural primitives from unilateral electromyographic recordings of 25 lower limb muscles during five locomotor tasks: walking forward, backward, leftward and rightward, and stepping in place. A subset of subjects also performed five variations of forward (unidirectional) walking: self-selected cadence, fast cadence, slow cadence, tiptoe, and uphill (20% incline). We assessed the results in the context of dimensionality reduction, defined here as the number of neural signals needing to be controlled. For an individual task, we found that modular architectures could theoretically reduce dimensionality compared with independent muscle control, but we also found that modular strategies relying on neural primitives shared across different tasks were limited in their ability to account for muscle activations during multi- and unidirectional locomotion. The utility of shared primitives may thus depend on whether they can be adapted for specific task demands, for instance, by means of sensory feedback or by being embedded within a more complex sensorimotor controller. Our findings indicate the need for more sophisticated formulations of modular control or alternative motor control hypotheses in order to understand muscle coordination during locomotion.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3