Differential Role of KIR Channel and Na+/K+-Pump in the Regulation of Extracellular K+ in Rat Hippocampus

Author:

D'Ambrosio Raimondo1,Gordon David S.1,Winn H. Richard1

Affiliation:

1. Department of Neurological Surgery, University of Washington, School of Medicine, Harborview Medical Center, Seattle, Washington 98104

Abstract

Little information is available on the specific roles of different cellular mechanisms involved in extracellular K+ homeostasis during neuronal activity in situ. These studies have been hampered by the lack of an adequate experimental paradigm able to separate K+-buffering activity from the superimposed extrusion of K+ from variably active neurons. We have devised a new protocol that allows for such an analysis. We used paired field- and K+-selective microelectrode recordings from CA3 stratum pyramidale during maximal Schaffer collateral stimulation in the presence of excitatory synapse blockade to evoke purely antidromic spikes in CA3. Under these conditions of controlled neuronal firing, we studied the [K+]o baseline during 0.05 Hz stimulation, and the accumulation and rate of recovery of extracellular K+ at higher frequency stimulation (1–3 Hz). In the first set of experiments, we showed that neuronal hyperpolarization by extracellular application of ZD7288 (11 μM), a selective blocker of neuronal I hcurrents, does not affect the dynamics of extracellular K+. This indicates that the K+ dynamics evoked by controlled pyramidal cell firing do not depend on neuronal membrane potential, but only on the balance between K+ extruded by firing neurons and K+ buffered by neuronal and glial mechanisms. In the second set of experiments, we showed that di-hydro-ouabain (5 μM), a selective blocker of the Na+/K+-pump, yields an elevation of baseline [K+]o and abolishes the K+ recovery during higher frequency stimulation and its undershoot during the ensuing period. In the third set of experiments, we showed that Ba2+ (200 μM), a selective blocker of inwardly rectifying K+channels (KIR), does not affect the posttetanus rate of recovery of [K+]o, nor does it affect the rate of K+ recovery during high-frequency stimulation. It does, however, cause an elevation of baseline [K+]o and an increase in the amplitude of the ensuing undershoot. We show for the first time that it is possible to differentiate the specific roles of Na+/K+-pump and KIR channels in buffering extracellular K+. Neuronal and glial Na+/K+-pumps are involved in setting baseline [K+]o levels, determining the rate of its recovery during sustained high-frequency firing, and determining its postactivity undershoot. Conversely, glial KIR channels are involved in the regulation of baseline levels of K+, and in decreasing the amplitude of the postactivity [K+]oundershoot, but do not affect the rate of K+clearance during neuronal firing. The results presented provide new insights into the specific physiological role of glial KIR channels in extracellular K+ homeostasis.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 209 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3