Interaction of free fatty acids and epinephrine in regulating hepatic glucose production in conscious dogs

Author:

Chu Chang An1,Galassetti Pietro1,Igawa Kayano1,Sindelar Dana K.1,Neal Doss W.1,Burish Mark1,Cherrington Alan D.1

Affiliation:

1. Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232

Abstract

To determine the effects of an increase in lipolysis on the glycogenolytic effect of epinephrine (EPI), the catecholamine was infused portally into 18-h-fasted conscious dogs maintained on a pancreatic clamp in the presence [portal (Po)-EPI+FFA, n = 6] and absence (Po-EPI+SAL, n = 6) of peripheral Intralipid infusion. Control groups with high glucose (70% increase) and free fatty acid (FFA; 200% increase; HG+FFA, n = 6) and high glucose alone (HG+SAL, n = 6) were also included. Hepatic sinusoidal EPI levels were elevated (Δ568 ± 77 and Δ527 ± 37 pg/ml, respectively) in Po-EPI+SAL and EPI+FFA but remained basal in HG+FFA and HG+SAL. Arterial plasma FFA increased from 613 ± 73 to 1,633 ± 101 and 746 ± 112 to 1,898 ± 237 μmol/l in Po-EPI+FFA and HG+FFA but did not change in EPI+SAL or HG+SAL. Net hepatic glycogenolysis increased from 1.5 ± 0.3 to 3.1 ± 0.4 mg · kg−1 · min−1( P < 0.05) by 30 min in response to portal EPI but did not rise (1.8 ± 0.2 to 2.1 ± 0.3 mg · kg−1 · min−1) in response to Po-EPI+FFA. Net hepatic glycogenolysis decreased from 1.7 ± 0.2 to 0.9 ± 0.2 and 1.6 ± 0.2 to 0.7 ± 0.2 mg · kg−1 · min−1by 30 min in HG+FFA and HG+SAL. Hepatic gluconeogenic flux to glucose 6-phosphate increased from 0.6 ± 0.1 to 1.2 ± 0.1 mg · kg−1 · min−1( P < 0.05; by 3 h) and 0.7 ± 0.1 to 1.6 ± 0.1 mg · kg−1 · min−1( P < 0.05; at 90 min) in HG+FFA and Po-EPI+FFA. The gluconeogenic parameters remained unchanged in the Po-EPI+SAL and HG+SAL groups. In conclusion, increased FFA markedly changed the mechanism by which EPI stimulated hepatic glucose production, suggesting that its overall lipolytic effect may be important in determining its effect on the liver.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3