High-fat diet-induced hyperinsulinemia and tissue-specific insulin resistance in Cry-deficient mice

Author:

Barclay Johanna L.1,Shostak Anton1,Leliavski Alexei12,Tsang Anthony H.12,Jöhren Olaf3,Müller-Fielitz Helge3,Landgraf Dominic1,Naujokat Nadine12,van der Horst Gijsbertus T. J.4,Oster Henrik12

Affiliation:

1. Circadian Rhythms Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany;

2. Department of Internal Medicine I, University of Lübeck, Lübeck, Germany

3. Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany;

4. Department of Genetics, Cancer Genomics Center, Erasmus University Medical Center, Rotterdam, Netherlands; and

Abstract

Perturbation of circadian rhythmicity in mammals, either by environmental influences such as shiftwork or by genetic manipulation, has been associated with metabolic disturbance and the development of obesity and diabetes. Circadian clocks are based on transcriptional/translational feedback loops, comprising positive and negative components. Whereas the metabolic effects of deletion of the positive arm of the clock gene machinery, as in Clock- or Bmal1-deficient mice, have been well characterized, inactivation of Period genes ( Per1–3) as components of the negative arm have more complex, sometimes contradictory effects on energy homeostasis. The CRYPTOCHROMEs are critical interaction partners of PERs, and simultaneous deletion of Cry1 and - 2 results in behavioral and molecular circadian arrhythmicity. We show that, when challenged with a high-fat diet, Cry1/2−/− mice rapidly gain weight and surpass that of wild-type mice, despite displaying hypophagia. Transcript analysis of white adipose tissue reveals upregulated expression of lipogenic genes, many of which are insulin targets. High-fat diet-induced hyperinsulinemia, as a result of potentiated insulin secretion, coupled with selective insulin sensitivity in adipose tissue of Cry1/2−/− mice, correlates with increased lipid uptake. Collectively, these data indicate that Cry deficiency results in an increased vulnerability to high-fat diet-induced obesity that might be mediated by increased insulin secretion and lipid storage in adipose tissues.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3