Leucine and mTORC1: a complex relationship

Author:

Dodd Kayleigh M.1,Tee Andrew R.1

Affiliation:

1. Cancer Genetics Department, Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, Wales, United Kingdom

Abstract

Amino acid availability is a rate-limiting factor in the regulation of protein synthesis. When amino acid supplies become restricted, mammalian cells employ homeostatic mechanisms to rapidly inhibit processes such as protein synthesis, which demands high levels of amino acids. Muscle cells in particular are subject to high protein turnover rates to maintain amino acid homeostasis. Mammalian target of rapamycin complex 1 (mTORC1) is an evolutionary conserved multiprotein complex that coordinates a network of signaling cascades and functions as a key mediator of protein translation, gene transcription, and autophagy. Signal transduction through mTORC1, which is centrally involved in muscle growth through enhanced protein translation, is governed by intracellular amino acid supply. The branched-chain amino acid leucine is critical for muscle growth and acts in part through activation of mTORC1. Recent research has revealed that mTORC1 signaling is coordinated primarily at the lysosomal membranes. This discovery has sparked a wealth of research in this field, revealing several different signaling molecules involved in transducing the amino acid signal to mTORC1, including the Rag GTPases, MAP4K3, and Vps34/ULK1. This review evaluates the current knowledge regarding cellular mechanisms that control and sense the intracellular amino acid pool. We discuss the role of leucine and mTORC1 in the regulation of amino acid transport via the system L and system A transporters such as LAT1 and SNAT2, as well as protein degradation via autophagic and proteasomal pathways. We also describe the complexities of energy homeostasis via AMPK and cell receptor-mediated growth signals that also converge on mTORC1. Leucine is a particularly potent regulator of protein turnover, to the extent where leucine stimulation alone is sufficient to stimulate mTORC1 signal transduction. The significance of leucine in this context is not yet known; however, recent advancements in this area will also be covered within this review.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 192 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3