Increased fetal glucose concentration decreases ovine fetal leucine oxidation independent of insulin

Author:

Liechty E. A.1,Boyle D. W.1,Moorehead H.1,Liu Y. M.1,Denne S. C.1

Affiliation:

1. Department of Pediatrics, Indiana University School of Medicine, Indianapolis 46202-5210.

Abstract

Fetal leucine oxidation rate is elevated during fasting of the ewe. Euglycemic hyperinsulinemia causes the leucine oxidation rate to decline. However, it is unclear whether this is a direct effect of insulin or is secondary to increased insulin-mediated glucose utilization. To better delineate the mechanism of decreased oxidation, we suppressed fetal insulin secretion by somatostatin infusion. Glucose was infused at a variable rate to achieve glucose concentrations 125 and 150% of basal. Leucine rate of appearance (Ra) was determined by infusion of [15N, 1-13C]leucine. Fraction of leucine appearance oxidized was determined by [1-14C]leucine infusion and determination of fetal 14CO2 excretion. Each fetus was studied during ad libitum maternal feeding and after a 5-day complete maternal fast. Changes were noted in fetal leucine oxidation, which declined from 8.4 +/- 1.2 to 5.0 +/- 0.8 mumol/min in the fed state during glucose infusion. Basal leucine oxidation was elevated during fasting (11 +/- 1.5 mumol/min, P < 0.05) and declined to 8.0 +/- 1.4 mumol/min during glucose infusion (P = 0.056). Leucine carbon Ra was unchanged by fasting and by glucose infusion; leucine nitrogen Ra declined in the fed state only. Leucine oxidation was inversely correlated with glucose concentration (oxidation = 12-0.26 x glucose concentration, r = 0.42, P = 0.004). Leucine oxidation was not correlated with insulin concentration (r = 0.2). Changes in fetal glucose concentration may alter the pattern of utilization of essential amino acids, independent of changes in insulin and insulin-mediated glucose utilization rate.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3