Affiliation:
1. Department of Zoology and Physiology, Louisiana State University, Baton Rouge 70803.
Abstract
The hindlimb muscles of the C57Bl6J dy2J/dy2J (dy2J) mouse suffer from a chronic neural stimulation (pseudomyotonia), resulting in increased contractile activity. In response to the increased contractile activity, these muscles store increased amounts of glycogen. In this study, glucose uptake and glycogenesis (glycogen synthesis from glucose) were analyzed in chronically active and normal muscles. In vivo experiments demonstrate increased 3-O-methylglucose (3-MG) uptake rates and glycogenesis by chronically active dy2J gastrocnemius muscles (Gast) vs. normal control Gast. The chronically active diaphragm muscle (Dia) showed the highest rates of 3-MG uptake, as well as glycogenesis in vivo when compared with other skeletal muscles. No differences were observed between dy2J and control Dia. The levels of blood glucose were similar between dy2J and control animals. In vitro experiments demonstrated an increased sensitivity and responsiveness to insulin for glucose uptake in the dy2J soleus muscle (Sol). Glycogenesis by dy2J Sol was elevated only at the highest insulin concentration tested (10,000 microU/ml). In contrast, the dy2J extensor digitorum longus muscle had an increased sensitivity and responsiveness to insulin for both glucose uptake and glycogenesis. This study demonstrates that chronically active muscles have elevated capacities for glucose uptake and glycogenesis and may help to explain the elevated glycogen levels in the dy2J hindlimb muscles.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献