Effects of nicotinic acid on fatty acid kinetics, fuel selection, and pathways of glucose production in women

Author:

Wang Wei1,Basinger Alice1,Neese Richard A.1,Christiansen Mark1,Hellerstein Marc K.12

Affiliation:

1. Department of Nutritional Sciences, University of California, Berkeley, 94720–3104; and

2. Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, California 94110

Abstract

Chronic nicotinic acid (NA) ingestion effectively lowers lipid levels, but adverse effects on glucose metabolism have been reported. Our goal was to investigate acute and chronic effects of NA on lipolysis and glucose metabolism in women. Healthy normolipidemic volunteers ( n = 5) were studied twice; four-day hospital stays were separated by 1 mo, during which time subjects took increasing doses of NA to 2 g/day (500 mg, 4 times). In the second study, 500 mg of NA was given at 0800. Rates of appearance (Ra) of free fatty acid (FFA), glycerol, and glucose were determined by isotope dilution (of [1,2,3,4-13C4]palmitate, [2-13C1]glycerol, and [U-13C6]glucose). Mass isotopomer distribution analysis was used to measure gluconeogenesis and glycogenolysis. Fasting FFA concentrations ([FFA]), RaFFA, and Ra glycerol were nonsignificantly elevated after 1 mo. Acute NA induced a significant reduction followed by a rebound overshoot of [FFA], Ra FFA, and Ra glycerol. Whole body fat oxidation fell initially and then increased back to basal levels; endogenous glucose production (EGP) increased in parallel with carbohydrate oxidation and then returned to basal values. The increased EGP was due entirely to increased glycogenolysis, not gluconeogenesis. We conclude that chronic effects of NA on FFA metabolism are complex (acute suppression followed by overshoot of Ra FFA and [FFA] on top of a trend toward basal elevations), that responses after NA are consistent with operation of a glucose-fatty acid cycle in peripheral tissues, and that secondary effects on EGP were through changes in glycogenolysis, not gluconeogenesis.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3