Role of a negative arterial-portal venous glucose gradient in the postexercise state

Author:

Galassetti Pietro1,Koyama Yoshiharu1,Coker Robert H.1,Lacy Drury B.1,Cherrington Alan D.1,Wasserman David H.1

Affiliation:

1. Department of Molecular Physiology and Biophysics and Diabetes Research and Training Center, Vanderbilt University, Nashville, Tennessee 37232–0615

Abstract

Prior exercise stimulates muscle and liver glucose uptake. A negative arterial-portal venous glucose gradient (a-pv grad) stimulates resting net hepatic glucose uptake (NHGU) but reduces muscle glucose uptake. This study investigates the effects of a negative a-pv grad during glucose administration after exercise in dogs. Experimental protocol: exercise (−180 to −30 min), transition (−30 to −20 min), basal period (−20 to 0 min), and experimental period (0 to 100 min). In the experimental period, 130 mg/dl arterial hyperglycemia was induced via vena cava (Pe, n = 6) or portal vein (Po, n = 6) glucose infusions. Insulin and glucagon were replaced at fourfold basal and basal rates. During the experimental period, the a-pv grad (mg/dl) was 3 ± 1 in Pe and −10 ± 2 in Po. Arterial insulin and glucagon were similar in the two groups. In Pe, net hepatic glucose balance (mg ⋅ kg−1⋅ min−1, negative = uptake) was 4.2 ± 0.3 (basal period) and −1.2 ± 0.3 (glucose infusion); in Po it was 4.1 ± 0.5 and −3.2 ± 0.4, respectively ( P < 0.005 vs. Pe). Total glucose infusion (mg ⋅ kg−1⋅ min−1) was 11 ± 1 in Po and 8 ± 1 in Pe ( P < 0.05). Net hindlimb and whole body nonhepatic glucose uptakes were similar. Conclusions: the portal signal independently stimulates NHGU after exercise. Conversely, prior exercise eliminates the inhibitory effect of the portal signal on glucose uptake by nonhepatic tissues. The portal signal therefore increases whole body glucose disposal after exercise by an amount equal to the increase in NHGU.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3