Affiliation:
1. Endocrine Research,
2. Infectious Disease, and
3. Research Technology and Proteins, Lilly Research Laboratories, Indianapolis, Indiana 46285
Abstract
Treatment of the pancreatic β-cell line βTC6-F7 with an imidazoline compound, RX-871024, KCl, or tolbutamide resulted in increased threonine phosphorylation of a 220-kDa protein (p220) concurrent with enhanced insulin secretion, which can be partially antagonized by diazoxide, an ATP-sensitive potassium (KATP) channel activator. Although phosphorylation of p220 was regulated by cytoplasmic free calcium concentration ([Ca2+]i), membrane depolarization alone was not sufficient to induce phosphorylation. Phosphorylation of p220 also was not directly mediated by protein kinase A, protein kinase C, or insulin exocytosis. Analysis of subcellular fractions indicated that p220 is a hydrophilic protein localized exclusively in the cytosol. Subsequently, p220 was purified to homogeneity, sequenced, and identified as nonmuscle myosin heavy chain-A (MHC-A). Stimulation of threonine phosphorylation of nonmuscle MHC-A by KCl treatment also resulted in increased phosphorylation of a 40-kDa protein, which was coimmunoprecipitated by antibody to MHC-A. Our results suggest that both nonmuscle MHC-A and the 40-kDa protein may play roles in regulating signal transduction, leading to insulin secretion.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献