Effect of a cyclooxygenase-2 inhibitor on postexercise muscle protein synthesis in humans

Author:

Burd Nicholas A.1,Dickinson Jared M.1,LeMoine Jennifer K.1,Carroll Chad C.1,Sullivan Bridget E.1,Haus Jacob M.1,Jemiolo Bozena1,Trappe Scott W.1,Hughes Gordon M.1,Sanders Charles E.1,Trappe Todd A.1

Affiliation:

1. Human Performance Laboratory, Ball State University, Muncie, Indiana

Abstract

Nonselective blockade of the cyclooxygenase (COX) enzymes in skeletal muscle eliminates the normal increase in muscle protein synthesis following resistance exercise. The current study tested the hypothesis that this COX-mediated increase in postexercise muscle protein synthesis is regulated specifically by the COX-2 isoform. Sixteen males (23 ± 1 yr) were randomly assigned to one of two groups that received three doses of either a selective COX-2 inhibitor (celecoxib; 200 mg/dose, 600 mg total) or a placebo in double-blind fashion during the 24 h following a single bout of knee extensor resistance exercise. At rest and 24 h postexercise, skeletal muscle protein fractional synthesis rate (FSR) was measured using a primed constant infusion of [2H5]phenylalanine coupled with muscle biopsies of the vastus lateralis, and measurements were made of mRNA and protein expression of COX-1 and COX-2. Mixed muscle protein FSR in response to exercise ( P < 0.05) was not suppressed by the COX-2 inhibitor (0.056 ± 0.004 to 0.108 ± 0.014%/h) compared with placebo (0.074 ± 0.004 to 0.091 ± 0.005%/h), nor was there any difference ( P > 0.05) between the placebo and COX-2 inhibitor postexercise when controlling for resting FSR. The COX-2 inhibitor did not influence COX-1 mRNA, COX-1 protein, or COX-2 protein levels, whereas it did increase ( P < 0.05) COX-2 mRNA (3.0 ± 0.9-fold) compared with placebo (1.3 ± 0.3-fold). It appears that the elimination of the postexercise muscle protein synthesis response by nonselective COX inhibitors is not solely due to COX-2 isoform blockade. Furthermore, the current data suggest that the COX-1 enzyme is likely the main isoform responsible for the COX-mediated increase in muscle protein synthesis following resistance exercise in humans.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3