Quantity of dietary protein intake, but not pattern of intake, affects net protein balance primarily through differences in protein synthesis in older adults

Author:

Kim Il-Young1,Schutzler Scott1,Schrader Amy2,Spencer Horace2,Kortebein Patrick1,Deutz Nicolaas E. P.1,Wolfe Robert R.1,Ferrando Arny A.1

Affiliation:

1. Department of Geriatrics, the Center for Translational Research in Aging & Longevity, Donald W. Reynolds Institute on Aging, Little Rock, Arkansas; and

2. College of Medicine Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas

Abstract

To examine whole body protein turnover and muscle protein fractional synthesis rate (MPS) following ingestions of protein in mixed meals at two doses of protein and two intake patterns, 20 healthy older adult subjects (52–75 yr) participated in one of four groups in a randomized clinical trial: a level of protein intake of 0.8 g (1RDA) or 1.5 g·kg−1·day−1 (∼2RDA) with uneven (U: 15/20/65%) or even distribution (E: 33/33/33%) patterns of intake for breakfast, lunch, and dinner over the day (1RDA-U, 1RDA-E, 2RDA-U, or 2RDA-E). Subjects were studied with primed continuous infusions of l-[2H5]phenylalanine and l-[2H2]tyrosine on day 4 following 3 days of diet habituation. Whole body protein kinetics [protein synthesis (PS), breakdown, and net balance (NB)] were expressed as changes from the fasted to the fed states. Positive NB was achieved at both protein levels, but NB was greater in 2RDA vs. 1RDA (94.8 ± 6.0 vs. 58.9 ± 4.9 g protein/750 min; P = 0.0001), without effects of distribution on NB. The greater NB was due to the higher PS with 2RDA vs. 1RDA (15.4 ± 4.8 vs. −18.0 ± 8.4 g protein/750 min; P = 0.0018). Consistent with PS, MPS was greater with 2RDA vs. 1RDA, regardless of distribution patterns. In conclusion, whole body net protein balance was greater with protein intake above recommended dietary allowance (0.8 g protein·kg−1·day−1) in the context of mixed meals, without demonstrated effects of protein intake pattern, primarily through higher rates of protein synthesis at whole body and muscle levels.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3