Redox-dependent and redox-independent subcomponents of protein degradation in perfused myocardium

Author:

Lockwood Thomas D.1

Affiliation:

1. Department of Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, Ohio 45435

Abstract

The integration of proteolytic pathways with metabolism was investigated in perfused rat myocardium. After a 10-min incorporation period, the minute-to-minute release of [3H]leucine from myocardial proteins was measured in nonrecirculating effluent perfusate. The nontoxic pro-oxidant probe diamide (100 μM) or a supraphysiological concentration of the endogenous oxidative metabolite dehydroascorbic acid (200 μM) reversibly inhibited 75% of myocardial proteolysis consisting of several known subcomponents (redox dependent); however, 25% of proteolysis was diamide insensitive (redox independent). Decrease in extracellular glucose concentration from 10 to 0.1 mM strongly increased the potencies of minimally effective concentrations of diamide (10 μM) or dehydroascorbic acid (15 μM) by ∼10-fold to the respective potencies maximally inhibiting proteolysis. The reversal of diamide action was also strongly dependent on the perfusate glucose concentration observed at 0.1, 0.2, 1.0 and 10 mM glucose. Proteolytic inhibition caused by diamide (100 μM) was not accompanied by change in basal tissue ATP content of 5 μmol/g wet wt. Conversely, nearly lethal 60% ATP depletion caused by sodium azide (0.4 mM) was not accompanied by change in total [3H]leucine release. Results indicate that a large proteolytic subcomponent (75%) is maintained by redox chains fed by glucose; however, there is no apparent linkage of this proteolysis to short-term ATP fluctuations. A distinct major proteolytic subcomponent (25%) does not vary in response to experimental intervention in either ATP content or redox chains.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3