Human insulin release processes measured by intraportal sampling

Author:

Pørksen Niels1,Grøfte Thorbjørn2,Greisen Jacob2,Mengel Anette1,Juhl Claus1,Veldhuis Johannes D.3,Schmitz Ole1,Rössle Martin4,Vilstrup Hendrik2

Affiliation:

1. Department of Endocrinology and Metabolism M, and

2. Medicine V (Hepatology and Gastroenterology), Aarhus University Hospital, 8000 Aarhus C, Denmark;

3. Department of Medicine and National Science Foundation Center for Biological Timing, University of Virginia, Charlottesville, Virginia 22908; and

4. Department of Hepatology, Freiburg University Hospital, Freiburg, Germany

Abstract

Insulin is secreted as a series of punctuated secretory bursts superimposed on variable basal insulin release. The contribution of these secretory bursts to overall insulin secretion has been estimated on the basis of peripheral vein sampling in humans to encompass ≥75% of overall insulin release. A similar contribution of the pulsatile mode of release was inferred in a canine model by use of portal vein sampling. The primary regulation of insulin secretion is through perturbation of the mass and frequency of these secretory bursts. The mode of delivery of insulin into the circulation seems important for insulin action; therefore, physiological conditions that alter the pattern of insulin release may affect insulin action through this mechanism. Transhepatic intraportal shunt in humans may provide access to portal vein samples, thus potentially improving the sensitivity of detecting and quantitating the frequency, mass, and amplitude of secretory bursts along with basal release and the regularity of these variables. To establish the insulin-secretory mechanism in nondiabetic humans by the use of portal vein sampling, we here assessed the mass, frequency, amplitude, and overall contribution of pulsatile insulin secretion by deconvolution analysis of portal vein insulin profiles. We find that, in nondiabetic humans fasted overnight, the portal vein insulin concentration oscillates at a periodicity of 4.1 ± 0.2 min/pulse and with secretory peak amplitudes averaging 660% of basal (interpulse) release. The frequency was confirmed by spectral and autocorrelation analyses. The punctuated insulin-secretory bursts partially overlap and are responsible for the majority (70 ± 4%) of insulin release. After ingestion of a mixed meal, the insulin release was increased through amplification of the secretory burst mass (507 ± 104 vs. 1,343 ± 211 pmol · l−1· min−1, P < 0.001), whereas frequency (4.4 ± 0.2 vs. 4.3 ± 0.2, P = 0.86) and basal secretion (62 ± 14 vs. 91 ± 22 pmol · l−1· min−1, P = 0.33) were unaffected. One subject with diabetes and cirrhosis had a similar insulin-secretory pattern, whereas a subject with insulin-dependent diabetes mellitus and minimal insulin release had preserved pulsatile release. A single subject was entrained to show agreement between entrained frequency and portal vein insulin oscillations. We conclude that insulin release in the human portal vein occurs at a mean periodicity of 4.4 ± 0.2 min with a high signal-to-noise ratio (pulse amplitude 660% of basal). The impact of noise on the detected high frequency cannot be excluded.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3