Author:
Liao Wei,Nguyen M. T. Audrey,Yoshizaki Takeshi,Favelyukis Svetlana,Patsouris David,Imamura Takeshi,Verma Inder M.,Olefsky Jerrold M.
Abstract
Peroxisome proliferator-activated receptor-γ (PPAR-γ) plays a critical role in regulating insulin sensitivity and glucose homeostasis. In this study, we identified highly efficient small interfering RNA (siRNA) sequences and used lentiviral short hairpin RNA and electroporation of siRNAs to deplete PPAR-γ from 3T3-L1 adipocytes to elucidate its role in adipogenesis and insulin signaling. We show that PPAR-γ knockdown prevented adipocyte differentiation but was not required for maintenance of the adipocyte differentiation state after the cells had undergone adipogenesis. We further demonstrate that PPAR-γ suppression reduced insulin-stimulated glucose uptake without affecting the early insulin signaling steps in the adipocytes. Using dual siRNA strategies, we show that this effect of PPAR-γ deletion was mediated by both GLUT4 and GLUT1. Interestingly, PPAR-γ-depleted cells displayed enhanced inflammatory responses to TNF-α stimulation, consistent with a chronic anti-inflammatory effect of endogenous PPAR-γ. In summary, 1) PPAR-γ is essential for the process of adipocyte differentiation but is less necessary for maintenance of the differentiated state, 2) PPAR-γ supports normal insulin-stimulated glucose transport, and 3) endogenous PPAR-γ may play a role in suppression of the inflammatory pathway in 3T3-L1 cells.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
113 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献