Affiliation:
1. School of Kinesiology and Health Science and
2. Muscle Health Research Centre, York University, Toronto, Ontario, Canada
Abstract
Optimal skeletal muscle mass is vital to human health, because defects in muscle protein metabolism underlie or exacerbate human diseases. The mammalian target of rapamycin complex 1 is critical in the regulation of mRNA translation and protein synthesis. These functions are mediated in part by the ribosomal protein S6 kinase 1 (S6K1) through mechanisms that are poorly understood. The tumor suppressor programmed cell death 4 (PDCD4) has been identified as a novel substrate of S6K1. Here, we examined 1) the expression of PDCD4 in skeletal muscle and 2) its regulation by feed deprivation (FD) and refeeding. Male rats (∼100 g; n = 6) were subjected to FD for 48 h; some rats were refed for 2 h. FD suppressed muscle fractional rates of protein synthesis and Ser67phosphorylation of PDCD4 (−50%) but increased PDCD4 abundance ( P < 0.05); refeeding reversed these changes ( P < 0.05). Consistent with these effects being regulated by S6K1, activation of this kinase was suppressed by FD (−91%, P < 0.05) but was increased by refeeding. Gavaging rats subjected to FD with a mixture of amino acids partially restored muscle fractional rates of protein synthesis and reduced PDCD4 abundance relative to FD. Finally, when myoblasts were grown in amino acid- and serum-free medium, phenylalanine incorporation into proteins in cells depleted of PDCD4 more than doubled the values in cells with a normal level of PDCD4 ( P < 0.0001). Thus feeding stimulates fractional protein synthesis in skeletal muscle in parallel with the reduction of the abundance of this mRNA translation inhibitor.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献