Coding of peripersonal space in inferior premotor cortex (area F4)

Author:

Fogassi L.1,Gallese V.1,Fadiga L.1,Luppino G.1,Matelli M.1,Rizzolatti G.1

Affiliation:

1. Istituto di Fisiologia Umana, Universita di Parma, Italy.

Abstract

1. We studied the functional properties of neurons in the caudal part of inferior area 6 (area F4) in awake monkeys. In agreement with previous reports, we found that the large majority (87%) of neurons responded to sensory stimuli. The responsive neurons fell into three categories: somatosensory neurons (30%); visual neurons (14%); and bimodal, visual and somatosensory neurons (56%). Both somatosensory and bimodal neurons typically responded to light touch of the skin. Their RFs were located on the face, neck, trunk, and arms. Approaching objects were the most effective visual stimuli. Visual RFs were mostly located in the space near the monkey (peripersonal space). Typically they extended in the space adjacent to the tactile RFs. 2. The coordinate system in which visual RFs were coded was studied in 110 neurons. In 94 neurons the RF location was independent of eye position, remaining in the same position in the peripersonal space regardless of eye deviation. The RF location with respect to the monkey was not modified by changing monkey position in the recording room. In 10 neurons the RF's location followed the eye movements, remaining in the same retinal position (retinocentric RFs). For the remaining six neurons the RF organization was not clear. We will refer to F4 neurons with RF independent of eye position as somatocentered neurons. 3. In most somatocentered neurons (43 of 60 neurons) the background level of activity and the response to visual stimuli were not modified by changes in eye position, whereas they were modulated in the remaining 17. It is important to note that eye deviations were constantly accompanied by a synergic increase of the activity of the ipsilateral neck muscles. It is not clear, therefore, whether the modulation of neuron discharge depended on eye position or was a consequence of changes in neck muscle activity. 4. The effect of stimulus velocity (20-80 cm/s) on neuron response intensity and RF extent in depth was studied in 34 somatocentered neurons. The results showed that in most neurons the increase of stimulus velocity produced an expansion in depth of the RF. 5. We conclude that space is coded differently in areas that control somatic and eye movements. We suggest that space coding in different cortical areas depends on the computational necessity of the effectors they control.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 555 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3