Sequestration of glutamate-induced Ca2+ loads by mitochondria in cultured rat hippocampal neurons

Author:

Wang G. J.1,Thayer S. A.1

Affiliation:

1. Program in Neuroscience, University of Minnesota Medical School,Minneapolis 55455, USA.

Abstract

1. Buffering of glutamate-induced Ca2+ loads in single rat hippocampal neurons grown in primary culture was studied with ratiometric fluorescent Ca2+ indicators. The hypothesis that mitochondria buffer the large Ca2+ loads elicited by glutamate was tested. 2. The relationship between glutamate concentration and the resulting increase in the free intracellular Ca2+ concentration ([Ca2+]i) reached an asymptote at 30 microM glutamate. This apparent ceiling was not a result of saturation of the Ca2+ indicator, because these results were obtained with the low-affinity (dissociation constant = 7 microM) Ca2+ indicator coumarin benzothiazole. 3. Five minutes of exposure to glutamate elicited concentration-dependent neuronal death detected 20-24 h later by the release of the cytosolic enzyme lactate dehydrogenase into the media. Maximal neurotoxicity was elicited at glutamate concentrations > or = 300 microM. The discrepancy between the glutamate concentration required to evoke a maximal rise in [Ca2+]i and the higher concentration necessary elicit maximal Ca(2+)-triggered cell death suggests that large neurotoxic Ca2+ loads are in part removed to a noncytoplasmic pool. 4. Treatment of hippocampal neurons with the protonophore carbonyl cyanide p-(trifluoro-methoxy) phenylhydrazone (FCCP; 1 microM, 5 min) greatly increased the amplitude of glutamate-induced [Ca2+]i transients, although it had little effect on basal [Ca2+]i. The effect of FCCP was more pronounced on responses elicited by stimuli that produced large Ca2+ loads. Similar results were obtained by inhibition of electron transport with antimycin A1. Neither agent, under the conditions described here, significantly depressed cellular ATP levels as indicated by luciferase-based ATP measurements, consistent with the robust anaerobic metabolism of cultured cells. Thus inhibition of mitochondrial function disrupted the buffering of glutamate-induced Ca2+ loads in a manner that was not related to changes in ATP. 5. Removal of extracellular Na+ for 20 min before exposure to N-methyl-D-aspartate (NMDA) (200 microM, 3 min), presumably reducing intracellular Na+, evoked a prolonged plateau phase in the recovery of the [Ca2+]i transient that resembled the mitochondrion-mediated [Ca2+]i plateau previously observed in sensory neurons. Return of extracellular Na+ immediately after exposure to NMDA increased the height and shortened the duration of the plateau phase. Thus manipulation of extracellular Na+ altered the plateau in a manner consistent with plateau height being modulated by intracellular Na+ levels. 6. In neurons depleted of Na+ and challenged with NMDA, a plateau resulted; during the plateau, application of FCCP in the absence of extracellular Ca2+ produced a large increase in [Ca2+]i. In contrast, similar treatment of cells that were not depleted of Na+ failed to increase [Ca2+]i. Thus Na+ depletion traps Ca2+ within an FCCP-sensitive intracellular store. 7. Glutamate-induced Ca2+ loads are sequestered by an intracellular store that had a low affinity and a high capacity for Ca2+, was released by FCCP, was sensitive to antimycin A1, and was modulated by intracellular Na+ levels. We conclude that mitochondria sequester glutamate-induced Ca2+ loads and suggest that Ca2+ entry into mitochondria may account for the poor correlation between glutamate-induced neurotoxicity and glutamate-induced changes in [Ca2+]i.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 143 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3