Excitatory postsynaptic potentials evoked by ventral root stimulation in neonate rat motoneurons in vitro

Author:

Jiang Z. G.1,Shen E.1,Wang M. Y.1,Dun N. J.1

Affiliation:

1. Department of Pharmacology, Loyola University Stritch School of Medicine, Maywood, Illinois 60153.

Abstract

1. Intracellular recordings were made from antidromically identified motoneurons in transverse (500 microns) lumbar spinal cord slices of neonatal (12-20 day) rats. 2. Electrical stimulation of ventral rootlets evoked, with or without an antidromic spike or initial segment potential, a depolarizing response (latency, 1-4.2 ms), a hyperpolarizing response (latency, 1.5-3.5 ms), or a combination of two preceding responses in 38, 6, and 8% of motoneurons investigated. 3. The hyperpolarizing response was reversibly eliminated by low Ca2+ (0.25 mM), d-tubocurarine (d-Tc; 10 microM) or strychnine (1 microM), suggesting that this response represents an inhibitory post-synaptic potential (IPSP) mediated by glycine or a related substance release from inhibitory interneurons subsequent to their activation by axon collaterals in a manner analogous to the Renshaw cell circuitry described for the cat motoneurons. 4. The depolarizing responses were excitatory postsynaptic potentials (EPSPs), because they could be graded by varying the stimulus intensity and were reversibly abolished in low Ca2+ solution. 5. Membrane hyperpolarization increased the amplitude of EPSPs, and the mean extrapolated reversal potential was -4 mV. 6. EPSPs were augmented, rather than diminished, by dihydro-beta-erythroidine (1 microM) or d-Tc, arguing against a role of recurrent motor axon collaterals in initiating the responses. 7. The conduction velocity of the fibers initiating the EPSPs ranged from 0.35 to 0.96 m/s, indicating that these fibers were unmyelinated. Furthermore, the EPSP exhibited a constant delay when the stimulus frequency was varied from 1 to 5 Hz, and the synaptic delay estimated by extrapolation was less than 1 ms, suggesting that it was a monosynaptic event. 8. After complete separation of the ventral and dorsal horns by a knife cut, stimulation of ventral rootlets could still evoke an EPSP in motoneurons. 9. Superfusion of the slices with the nonselective glutamate receptor antagonist kynurenic acid (0.2-1 mM) or the selective quisqualate/kainate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) (0.5-1 microM) reversibly diminished the EPSPs. 10. EPSPs evoked by stimulation of dorsal and ventral rootlets exhibited different latency and waveform in the same motoneurons. 11. The results provide evidence that activation of ventral root afferents evoked an EPSP mediated by glutamate or a related substance in a population of motoneurons. Furthermore, the afferent pathway mediating the EPSP appears to be monosynaptic and confined to the ventral horn.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3