Affiliation:
1. Department of Physiology, School of Medicine, Tohoku University,Sendai, Japan.
Abstract
1. Single-unit activity in the cingulate cortex of the monkey was recorded during the performance of sensorially (visual, auditory, or tactile) triggered or self-paced forelimb key press movements. 2. Microelectrodes were inserted into the broad rostrocaudal expanse of the cingulate cortex, including the upper and lower banks of the cingulate sulcus and the hemispheric medial wall of the cingulate gyrus. 3. A total of 1,042 task-related neurons were examined, the majority of which were related to the execution of the key press movements. In greater than 60% of them, the movement-related activity preceded the activity in the distal flexor muscles. 4. The movement-related neurons were distributed, in two foci, in the posterior and anterior parts of the cingulate cortex, both including the upper and lower banks of the cingulate sulcus. The posterior focus was found to largely overlap the area projecting to the forelimb area of the primary motor cortex by the use of the horseradish peroxidase (HRP) method. 5. About 40% of the cingulate cortical neurons showed equimagnitude responses during the signal-triggered and self-paced movements. The neurons exhibiting a selective or differential response to the self-paced motor task were more frequently observed in the anterior than in the posterior cingulate cortex. 6. The long-lead type of changes in activity, ranging from 500 ms to 2 s, were observed mainly before the self-paced and, much less frequently, before the triggered movements. They were particularly abundant in the anterior cingulate cortex. 7. Only a few of the neurons showed activity time-locked to the onset of the sensory signals. 8. These observations indicate that the anterior and posterior parts of the cingulate cortex are distinct entities participating in the performance of limb movements, even if the movements are simple, such as those in this study.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
304 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献