Binaural properties of single units in the superior olivary complex of the mustached bat

Author:

Covey E.1,Vater M.1,Casseday J. H.1

Affiliation:

1. Department of Neurobiology, Duke University Medical Center, Durham,North Carolina 27710.

Abstract

1. Previous studies of the superior olive of echolocating bats suggest that the lateral superior olive (LSO) retains the same structure and function as in other mammals but that the medial superior olive (MSO) is different in structure and possibly also in function. The present study is an examination of this idea in Pteronotus parnellii, a bat that has a large and well-defined MSO. 2. Using pure tones presented via earphones, we obtained data on frequency tuning for 60 single units and 96 multiunits in LSO and 94 single units and 154 multiunits in MSO. Of these we also obtained binaural response characteristics from 55 single units in LSO and 72 single units in MSO. 3. LSO and MSO each have a complete tonotopic representation, arranged in a sequence similar to that of other mammals studied. However, in both LSO and MSO there is an expanded representation of the frequencies around 60 kHz, the main frequency component of the bat's echolocation call; there is another expanded representation of the range around 90 kHz, the third harmonic of the call. The expansion of these frequency ranges suggests that the functions of LSO and MSO in Pteronotus are related to echolocation behavior. 4. The binaural characteristics of cells in LSO were essentially the same as those seen in other mammals. Most LSO units (93%) were excited by the ipsilateral ear and inhibited by the contralateral ear. The responses of nearly all LSO units were completely suppressed when the sound level at the two ears was equal. 5. The binaural characteristics of cells in MSO were different from those in nonecholocating mammals. Most MSO units (72%) were excited by the contralateral ear but were neither excited nor inhibited by the ipsilateral ear. Of the remaining units, 21% were excited by the contralateral ear and inhibited by the ipsilateral ear, and only 6% were excited by both ears. 6. The temporal discharge patterns of units in MSO differed from the tonic response pattern seen in LSO. Most MSO units had phasic response patterns, with a few spikes at the onset or offset of the stimulus; the response often changed from ON to OFF depending on stimulus frequency. 7. The results support the idea that in evolution LSO has remained unchanged, whereas MSO has undergone adaptation. The function of LSO in Pteronotus seems to be identical to that in other mammals, i.e., analysis of interaural sound level differences to derive azimuthal location. The function of MSO in Pteronotus must be different from that in nonecholocating mammals.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Superior Olivary Complex;The Senses: A Comprehensive Reference;2020

2. The Auditory System Function - An Integrative Perspective;The Senses: A Comprehensive Reference;2020

3. “Specializations” in the Bat Auditory Cortex;The Senses: A Comprehensive Reference;2020

4. OBSOLETE: The Auditory System Function - An Integrative Perspective;Reference Module in Neuroscience and Biobehavioral Psychology;2020

5. Organization of projection from brainstem auditory nuclei to the inferior colliculus of Japanese house bat (Pipistrellus abramus );Brain and Behavior;2018-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3