Author:
English Arthur W.,Chen Yi,Carp Jonathan S.,Wolpaw Jonathan R.,Chen Xiang Yang
Abstract
The recovery of soleus (SOL), gastrocnemius (GAS), and tibialis anterior (TA) electromyographic activity (EMG) after transection and surgical repair of the sciatic nerve was studied in Sprague–Dawley rats using chronically implanted stimulation and recording electrodes. Spontaneous EMG activity in SOL and GAS and direct muscle (M) responses to posterior tibial nerve stimulation persisted for ≤2 days after sciatic nerve transection, but SOL and GAS H-reflexes disappeared immediately. Spontaneous EMG activity began to return 2–3 wk after transection, rose nearly to pretransection levels by 60 days, and persisted for the duration of the study period (120 days). Recovery of stimulus-evoked EMG responses began about 30 days after sciatic nerve transection as multiple small responses with a wide range of latencies. Over time, the latencies of these fractionated responses shortened, their amplitudes increased, and they merged into a distinct short-latency component (the putative M response) and a distinct long-latency component (the putative H-reflex). The extent of recovery of stimulation-evoked EMG was modest: even 100 days after sciatic nerve transection, the responses were still much smaller than those before transection. Similar gradual development of responses to posterior tibial nerve stimulation was also seen in TA, suggesting that some regenerating fibers sent branches into both tibial and common peroneal nerves.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献