LFP clustering in cortex reveals a taxonomy of Up states and near-millisecond, ordered phase-locking in cortical neurons

Author:

Mitelut Catalin C.1234ORCID,Spacek Martin A.45,Chan Allen W.6,Murphy Tim H.23,Swindale Nicholas V.4

Affiliation:

1. Department of Statistics, Columbia University, New York, New York

2. Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia, Canada

3. Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada

4. Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada

5. Department of Biology II, Division of Neurobiology, Ludwig-Maximilians-Universität München, Munich, Germany

6. Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada

Abstract

During slow-wave sleep and anesthesia, mammalian cortex exhibits a synchronized state during which neurons shift from a largely nonfiring to a firing state, known as an Up-state transition. Up-state transitions may constitute the default activity pattern of the entire cortex (Neske GT. Front Neural Circuits 9: 88, 2016) and could be critical to understanding cortical function, yet the genesis of such transitions and their interaction with single neurons is not well understood. It was recently shown that neurons firing at rates >2 Hz fire spikes in a stereotyped order during Up-state transitions (Luczak A, McNaughton BL, Harris KD. Nat Rev Neurosci 16: 745–755, 2015), yet it is still unknown if Up states are homogeneous and whether spiking order is present in neurons with rates <2 Hz (the majority). Using extracellular recordings from anesthetized cats and mice and from naturally sleeping rats, we show for the first time that Up-state transitions can be classified into several types based on the shape of the local field potential (LFP) during each transition. Individual LFP events could be localized in time to within 1–4 ms, more than an order of magnitude less than in previous studies. The majority of recorded neurons synchronized their firing to within ±5–15 ms relative to each Up-state transition. Simultaneous electrophysiology and wide-field imaging in mouse confirmed that LFP event clusters are cortex-wide phenomena. Our findings show that Up states are of different types and point to the potential importance of temporal order and millisecond-scale signaling by cortical neurons. NEW & NOTEWORTHY During cortical Up-state transitions in sleep and anesthesia, neurons undergo brief periods of increased firing in an order similar to that occurring in awake states. We show that these transitions can be classified into distinct types based on the shape of the local field potential. Transition times can be defined to <5 ms. Most neurons synchronize their firing to within ±5–15 ms of the transitions and fire in a consistent order.

Funder

Gouvernement du Canada | Canadian Institutes of Health Research

National Science and Engineering Council of Canada

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Voltage distributions in extracellular brain recordings;Journal of Neurophysiology;2021-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3