Auditory Response Properties in the Superior Paraolivary Nucleus of the Gerbil

Author:

Behrend Oliver1,Brand Antje1,Kapfer Christoph1,Grothe Benedikt1

Affiliation:

1. Max-Planck-Institute of Neurobiology, D-82152 Martinsried, Germany

Abstract

The ascending auditory pathway is characterized by parallel processing. At the brain stem level, several structures are involved that are known to serve different well-defined functions. However, the function of one prominent brain stem nucleus, the rodent superior paraolivary nucleus (SPN) and its putative homologue in other mammals, the dorsomedial periolivary nucleus, is unknown. Based on extracellular recordings from anesthetized gerbils, we tested the role of the SPN in sound localization and temporal processing. First, the existence of binaural inputs indicates that the SPN might be involved in sound localization. Although almost half of the neurons exhibited binaural interactions (most of them excited from both sides), effects of interaural time and intensity differences (ITD; IID) were weak and ambiguous. Thus a straightforward function of SPN in sound localization appears to be implausible. Second, inputs from octopus and multipolar/stellate cells of the cochlear nucleus and from principal cells of the medial nucleus of the trapezoid body could relate to precise temporal processing in the SPN. Based on discharge types, two subpopulations of SPN cells were observed: about 60% of the neurons responded to pure tones with sustained discharges, with irregular spike patterns and no phase-locking. Only four neurons showed a regular spike pattern (“chopping”). About 40% of the neurons responded with phasic on or off discharges. Average first spike latency observed in neurons with sustained discharges was significantly shorter than that of on responders, but had a considerably higher trial-to-trial variation (“jitter”). A subpopulation of on responders showed a jitter of less than ±0.1 ms. Most neurons (66%) responded to sinusoidally amplitude-modulated sounds (SAM) with an ongoing response, phase-locked to the stimulus envelope. Again, on responders showed a significantly higher temporal precision in the phase-locked discharge compared with the sustained responders. High variability was observed among spike-rate-based modulation transfer functions. Histologically, a massive concentration of cytochemical markers for glycinergic input to SPN cells was demonstrated. Application of glycine or its blockade revealed profound effects of glycinergic inhibition on the auditory responses of SPN neurons. The existence of at least two subpopulations of neurons is in line with different subsets of SPN cells that can be distinguished morphologically. One temporally less precise population might modulate the processing of its target structures by providing a rather diffuse inhibition. In contrast, precise onresponders might provide a short, initial inhibitory pulse to its targets.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3